

THERMOKINETICS Sparse Data Software (TKsd)

Evaluation of Kinetic Parameters from Sparse, Discontinuously Collected Thermoanalytical Data

CONTENT

AKTS E-Learning

www.akts.com/tksd/e-learning

TABLE OF CONTENTS

THERMOKINETICS SPARSE DATA SOFTWARE (TKSD) BASED ON ADVANCED KINETIC AND STATISTICAL MODEL SELECTION APPROACHES (AIC&BIC)

Data collection and importation	3
Kinetic analysis	10
Evaluation of kinetic models and parameters	11
Ranking of kinetic models according to statistical criteria AIC & BIC	12

PREDICTIONS

Isothermal temperature mode, Time-Temperature-Transformation (TTT) diagram	15
Step-wise temperature mode	20
Modulated temperature mode	24
Worldwide real atmospheric temperature profiles	25
STANAG climatic categories	26
User customized temperature mode	27
Mixed temperature modes	29
Kinetic analysis based on noisy sparse data	30
Determination of prediction bands (e.g. 95% confidence)	
and verification of the predictions	32
Prediction of the change of material properties with the prediction bands	
at randomized temperature fluctuations	36

AKTS E-LEARNING

THERMOKINETICS SPARSE DATA SOFTWARE (TKsd) BASED ON ADVANCED KINETIC AND STATISTICAL MODEL SELECTION APPROACHES (AIC&BIC)

TKsd Software allows, among others:

- Life-time prediction from small amount of experimental points
- Determination of the prediction bands
- Simulation of the reaction course under any temperature mode
- Verification of the predictions by additional experimental data

DATA COLLECTION AND IMPORTATION

At least 20-30 experimental points have to be collected at a minimum of three temperatures. Additional experiments at different temperatures or additional time-points increase the accuracy of the kinetic analysis. In our case study the experiments used for kinetic analysis were performed at 45, 37, 25 and 5°C.

FIG. 1 - Introducing password to start the AKTS-Thermokinetics software (TKsd).

😻 📄 💾 🛞 🕪 🕜 📼	∓ AKTS-Them	nokinetics (Thermal Aging, Safety and Reaction C	alorimetry Versions)	A –	×
KPF Load Kinetic Project Kinetic Project File	Import Import other ASCII Data type of data Data Importation	C Importation RC Prediction Mathemat Comport of the second secon	ics Functions View View Jype a com Print Chart Capture Chart Export Chart Data Exportation	mand to execute	^
admin 5.31 Pe	adv				

FIG. 2 - Opening screen of TKsd

😻 🗎 🗎 🗵 🕩 🕢 🖬		nokinetics (Thermal Aging, Safety and Reaction C	alorimetry Versions)	A – D	×
Menu File Thermoki	netics RC Acquisition R	C Importation RC Prediction Mathemat	tics Functions View 💡 Type a cor	nmand to execute	
Load Kinetic Project Project Kinetic Project File	Import ASCII Data Data Importation	Importations Importations Save Single Zone Exportations Save Single Zone As Merging Single Zone Single Zone	Print Chart Capture Chart Capture Chart Data Adapt Charts Resolution Exportation		~
	Import ASCII Data				
	Load one or more files which in text format (ASCII).	n are			
admin 🔵 5.31 Rea	ady				

The user can import any data in ASCII-format (.txt-files) independent of its source containing information about:

- Time
- ► Temperature
- Measured quantity changing as a function of time and/or temperature and/or relative humidity as e.g. the sample mass, heat flow, concentration of active component, amount of degradation product etc.

😻 📄 💾 🗵 Menu 🛛 File	Thermokinetics RC A	AKTS-Therm	okinetics (Thermal Aging, C Importation RC Prec	Safety and Reaction C diction Mathemat	alorimetry Ver	rsions) View 💡 Type	a command to execute	×
Load Kinetic Project Kinetic Proj	Save Kinetic Project ject File	Import other type of data	Open Single Zone Save Single Zone Save Single Zone As Single Z	Importations D Exportations Merging	Print Ch ioi Capture	art Chart Chart Data Exportation	harts tion	^
		his PC → Windo	vs (C:) > AKTS version 5	> save	~	د ک ایک Searc	:h save	
	Organise 👻 New fold	ler Name	^	Date modifi	ied	Туре	Size	
	OneDrive	data 5C.t data 25C	kt txt txt	01/10/2020 01/10/2020 01/10/2020	13:46 13:47 13:47	Text Document Text Document Text Document	1 KB 1 KB 1 KB	
	Inis PC Network	data 45C	txt	01/10/2020	13:47	Text Document	1 KB	
	Filer	name: "data 45C	txt" "data 5C.txt" "data 25	C.txt" "data 37C.txt"		→ Text Files (*.txt) ~	
						Open	Cancel	
admin 🔵	5.31 Ready							

FIG. 4 - Selection of the requested data files.

😻 🔓 💾 🛞 🕪 🕢 🖬	÷ ,	AKTS-Thermokinetics	(Thermal Agin	g, Safety and Reaction Calorir	metry Versions)		T.	- 🗆	×
Menu File Thermok	See.					Turne a com	mand to ex	ecute	
Load Kinetic Project	lmpo	rt ASCII F	-ile			~			
Kinetic Project File	Current File	-							~
	C: VAK IS Version	5 save data 45C.txt							
	File Header				Hide Header	Hide Grid			
	Time (days)	Material property (a.u.)				^			
						\sim			
	1	2				A			
	1 0	9.63							
	2 0	9.48							
	3 1	8.69							
	4 3	8.19							
	5 3	8.09							
	£ 7	7 67				*			
	🤌 Melting Tem	perature							
	Introduce melting to	emperature (if available)	℃						
	💧 Temperatur	e 🕓 Ti	me	🖂 Signal	💧 Relat	ive Humidity			
	Column -	 Column 	- ~	Column -	 ✓ Ocolumn 	- v			
	Units °C	✓ Units	- ~	O Continuous data collection	. Unit	% ~			
	O If no column with	temp.		Discontinuous data collect	If no colu	mn with			
	Set temperature a	as °C			relative h	umidity, e humidity			
	Open temperatur	e from file Filter	1 points	Units	as 50	%			
				Name Unknown					
admin 🔵 5.31	File Templates Enter a name	Ľ	Choose	~ 🗙	✓ Import	Cancel ?			

FIG. 5 - Selection of temperature, time, measured quantity (signal) and relative humidity.

😻 📄 💾 🛞 🕪 🕜 📼		nokinetics (Thermal Aging	, Safety and Reaction Calorimetry Ver	sions)	A _	□ ×
Menu File Thermok	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Turne a com	mand to execut	e
Load Kinetic Parkinetic Save Kinetic	📘 Import AS	Cll File		~		
Kinetic Project File	Current File					~
	C:\AKTS version 5\save\data	45C.txt				
	File Header			Hide Header Hide Grid		
	Time (days) Material pro	perty (a.u.)		^		
				¥		
	1 2			^		
	1 0 9.	53				
	2 0 9.	48				
	3 1 8.	59				
	4 3 8.	19				
	5 3 8.	09				
	6 7 7	57				
	Melting Temperature					
	Introduce melting temperature	(if available) C				
	L Temperature	() Time	✓ Signal	Relative Humidity		
	OColumn - V	Column 1 v	Column 2 V	OColumn - ✓		
		Units day 🗸	O Continuous data collection	Linit %		
	If no column with temp.	duy .	Discontinuous data collection	→ If no column with		
	Set temperature as 45 °C	Filter 1 points	Units a.u.	set relative humidity, as 50 %		
			Name Material property			
admin 9 5.31	File Templates	Choose	~ 🗙 🗸 Ing	port XCancel ?		

FIG. 6 - Defining the name and units of the measured quantity.

😻 📄 💾 🗵 🕪 🕝 🖬	 AKTS-Thermokinetics (Thermal Aging, Safety and Reaction Calorimetry Versions) 		A	-	×
Menu File Thermoki		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	hand to	execute	
Load Kinetic Project Save Kinetic Project		Î			
Kinetic Project File	C:\AKTS version 5\save\data 45C.txt				^
	File Header Hide Grid	d			
	Time (days) Material property (a.u.)	< .			
		<u>^</u>			
	2 0 9.48 3 1 9.60				
	4 3 8.19				
	5 3 8.09				
	<u> </u>	Ť			
	Melting Temperature Introduce melting temperature (if available) C				
	🛔 Temperature 🕓 Time 🖂 Signal 🌰 Relative Humid	dity			
	O Column - Column 1 ~ O column - Units O column O co	~			
	If the column with temp. Set temperature as 45 °C Open temperature from file Filter Interval Dentemperature from file Filter				
	Name Material property				
admin 🔵 5.31	File Templates Enter a name Yamport Yamport	?			

FIG. 7 - Specifying temperature (here 45°C) if the temperature column is not included in the ASCII data files.

😻 📄 💾 🙁 🕪 🕜 Menu File Therr	*	A 1/7	re - Ti L'			Den kine Calarian	tM	×	com	mand to a	execute	×
Load Kinetic Save Kine Project Project Kinetic Project File	Current File	port A	data 37C.txt	-ile			Links Manufac		arts in			^
Importations ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Time (days)	Material	property (a.u.)				nice neader					
	1 2 3 4 5 6 Meltin Introduce m	1 0 7 7 14 14 9 Temperatu	2 9.60 9.40 8.25 8.33 7.99 8.16 re ure (jf available))				~				
	Column Units If no colum Set temper	erature C C ature as 37 erature from fi	Column Units P°C Filter	me 1 v day v 1 points	Signal Column O Continuous c Discontinuou Units Name Material	2 v lata collection s data collection a.u.	Relat Column Unit If no colu relative 1 set relati as 50	tive Humidity				
admin 9 5.31	File Template	• s e	Ľ	Choose		~ X 🗸	import 🗙	Cancel ?				

FIG. 8 - Introducing data set recorded at 37°C.

Menu File Therr	¥	port /	ASCILI	-ile				×	comr	nand to e	execute	×
KPF KPF		1										
Load Kinetic Save Kine	Current File	version 5\save	data 25C.txt						arts			
Kinetic Project		renonen o porte	0010 2001011				Later t		'n			~
	File Header						Hide Header	Hide Grid	-			
	Time (days)	Materia	il property (a.u.)					< v				
			2									
	1	0	9.61					<u>^</u>				
	2	0	9.46									
	3	7	8.88									
	4	7	8.76									
	5	14	8.57									
	6	14	8 51					*				
		elting temperat	ture (if available)	•c	Grant		é p-lu					
	li Temp	erature		me	Signal	2	Relat	ive Humidity				
	Column	- ~	Column	1 ~	Continuour	data collection	Column	- ~				
	Units	°C ∨	Units	day 🗸	Discontinue	ous data collection	Unit	% ~				
	Set tempe	nn with temp. rature as 25]∘c Filter	1 points	Units	a.u.	relative h set relativ	nn with umidity, /e humidity %				
	Open tem	perature from	file	perior	Name Materia	l property						
	File Templat	es										
	Enter a nan	1e	E9	Choose		- X 🖌 🖌	mport 🗙	Cancel 2				

FIG. 9 - Introducing data set recorded at 25°C.

😻 🗎 💾 🛞 🕪 🕜	1	AICT	C Theorem Line	ation (Theorem 14	ing Cofeenad De	- Kan Oslada da		×	1	A	- 0	×
Menu File Therr									com	mand to e	xecute	
	🛄 lm	port A	SCII I	File								
Load Kinetic Save Kine	Current File								arts			
Project Project	C:\AKTS	version 5\save\d	lata 5C.txt						n			
Kinetic Project File	File Header					ł	Hide Header	Hide Grid				^
□ M Importations □ ▷ ✔ 45 °C data 45C □ ▷ □ Temperature	Time (days)	Material p	property (a.u.)					^				
► ► Material prop ■ ► ▼ 37 °C data 37C												
► Material prop								~				
			_									
► Material prop		1	2					^				
	2	7	9.27									
	3	7	9.43									
	4	30	8.94									
	5	30	9.04									
	6	60	8 70					Ŷ				
	🥢 Meltin	g Temperatu	re									
	Introduce m	elting temperatu	re (if available)	℃								
	📗 Temp	erature	U T	me	🖂 Signal		Relativ	ve Humidity				
	Column	- ~	Column	1 ~	Column	2 ~	Column	- ~				
	Units	°C ~	Units	day 🗸	O Continuous data	collection	Unit	% ~				
	If no colum	nn with temp.			Discontinuous da	ata collection	_ If no colum	n with				
	Set temper	rature as 5	°C		Unita		 relative hu set relative 	midity, humidity				
	Open tem	perature from file	Filter	1 points	onits	.u.	as 50	%				
	0		-		Name Material prop	perty						
	File Template	25										
	Enter a nam	e		Choose		- 🗙 🛛 🖌 Imp	port 🗙 🤇	ancel ?				
		81							1			
admin 🥑 5.31												

FIG. 10 - Introducing data set recorded at 5°C.

FIG. 11 – Graphical presentation of the imported sparse data collected at 5, 25, 37 and 45°C.

KINETIC ANALYSIS

FIG. 1 – Choose the "Kinetics" tool; data collected at 45, 37, 25 and 5°C will be used in the kinetic analysis.

EVALUATION OF KINETIC MODELS AND PARAMETERS

😻 📄 💾 🗵	•	÷	AKTS-TI	nermokinetics (Th	ermal Aging, Safe	ty and React	ion Calorimetry Versions)				×
Menu File	Thermok	inetics F	C Acquisition	RC Importation	RC Predictio	n Mathe	matics Functions Vie	ew 🥊 Type a	command to execute		
 Automatic Baselines	Kinetics	Optimize Baselines	Simulation	ری Optimization	Prediction) Mixed	Temperature Reaction Progress Cr' Reaction Rate	Set			
buschnes	Comput	ting Kinetic F	arameters		Predict	ion	Chart	Other			^
*											×
📥 Kine	etics										
Best model se	lection				Experimental dat	ta					
 Automatic (t 	his process may	y take severa	l minutes)		Consider all data						
O Custom				C) Consider data fro	m unti	5.977 month ~				
Tritial value va	init	End	unduo un ond	a	nd Tmin 4.999999	49 <= 1 (°C) ·	<= Imax 45				
			end 0			y < y					
Models					Alpha storage	5 40					
0 1 sten					Alpria storage	E-10					
① 1 step + 2 step ③	teps				Use humidity						
						Save	Load 🕑 Reset para	meters	 Optimization 	×c	Cancel
admin 🥥	5.31 Re	ady									

FIG. 1 - Evaluation of Kinetic Models and parameters. In this example: (i) For the best model selection ("1 step & 2 steps") the **Automatic mode** is chosen (ii) The "y-init"-value is checked, therefore it will be optimized during calculations. (iii) The y-end value is unchecked and set to zero, therefore during calculations the final y-end value is forced to be zero. (iv) All data are considered in the kinetic analysis.

Best model selection:

For the best model selection one can choose between the **Automatic** (recommended) or the **Custom** mode which is more advanced and requires manual introduction of the kinetic equations. User can choose between:

- "1 step" (for one-stage reaction)
- or
 - "1 step & 2 steps" (for two-stages reaction)

Successive models are consecutively checked to find the best fit of the experimental data. During fitting procedure all kinetic models present in the software library (for one- and two-stages reactions) are considered.

Input of "Initial" and "End" values ("y-init" and "y-end"):

The "Initial" and "End" values are generally picked up from the experimental data points however the user has the possibility to fix or optimize these values during calculations.

- ▶ If the box is checked, the y-init, y-end or both values are optimized during calculations.
- If the box remains unchecked, y-init, y-end or both values are forced to the entered values accordingly.

Experimental data:

During the determination of the best kinetic model one can change the range of data used in the kinetic analysis – see the red-marked top-right rectangle

RANKING OF KINETIC MODELS ACCORDING TO STATISTICAL CRITERIA AIC & BIC

The selection of the best kinetic models describing the reaction course is based on Akaike and Bayesian Information criteria (AIC&BIC). The application of both criteria helps balance between the goodness of the fit of the experimental results by the prediction curves, the number of required models and the number of parameters used.

- During selection of the best model not only the quality of fit (such as the sum of residual squares), but also the number of data points and model parameters are considered.
- Applied procedure indicates not only which model is more likely to be correct but also quantifies how much more likely by application of the AIC and BIC weights "w".

FIG. 1 - Kinetic parameters determined for all considered models and fit of experimental points (solid circles) by the best model. The best model has the highest weights (wAIC=ca.63% and wBIC=ca.66%).

FIG. 2 - Kinetic parameters of the best model after optimization. Parameters with fixed value (denoted by *) were not optimized.

The parameters of the best kinetic models can be additionally optimized after selection of the tool **«Optimization».**

The software has already chosen which model is the best, but one can additionally select the other models (o-th order in Fig. 3 and 1-st order in Fig. 4) for comparison.

FIG. 3 - Fit of experimental data (solid circles) by the best model (solid lines) chosen according to Akaike and Bayesian criteria and by commonly applied 0-th order kinetic model (dashed lines).

FIG. 4 - Fit of experimental data (solid circles) by the best model (solid lines) chosen according to Akaike and Bayesian criteria and by commonly applied first order kinetic model (dashed lines).

ISOTHERMAL TEMPERATURE MODE, TIME-TEMPERATURE-TRANSFORMATION (TTT) DIAGRAM

📄 💾 🛞 🬗 🕜	. =	AKTS-Therm	okinetics (Therma	Il Hazard, Aging,	Safety and Re	action Calorimetr	y Versions)	T	- 0
Predictions									×
Precent	dictio	ons							
Temperature pr	ofiles	ct	Madulated	Charle	Weddedde	CT IN IC	Customized		
ISO CADT	NON-150	Step	Modulated	SHOCK	worldwide	STANAG	Customized		
Safeby Diagram	TMPad	1 Stability Diagram							
Sarcey Magrani	TTRau								
Isothermal condition	15					Quick Iso Prediction		Show results in	one plot
 Isothermal 						min V	- V	Combine all axe	S
OTTT (time-temperat	ure-transform	ation) diagram							
Temperature = ∆T =	s °⊂ 0 °⊂	+							
Number of isotherms =	1								
Final temperature =	5 °C					Temperature (°C)	20		
						Calculate	Export		
						Ľ	Save 📄 Load.	🗸 ок	Cancel
Enter applied equation Example : 1e10 * exp(with STL K and .	on -100000/8.31	4/T) * (1-a)^2							
with $[1] = K$ and $a = alpevo(50, 413) * evo(-1)$	na = reaction 747E+5/8 314	(T) * (1-a)^2 * a^0		eyp(16	284) * evp(-72	585 671/8 314/7\ *	* (1-a)^2 * a^0		1
C.p.(301.125) C.p.(11		,,, (10, 2 4 0		CXP(10	101, CAP(72	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(10) 2 0 0		
Signal		alpha storage		у_i	nit	y_end	ratio v1		
Type of signal EX-SITU	J V	alpha storage 1E-10		9.5	47	0	0.859		
					Tir	me (day)			*
dunin 🦲 5.21	Ready								

FIG. 1 - In an automatic mode the best ranked kinetic model is automatically introduced and used for the predictions.

FIG. 2 - Prediction of the reaction course at chosen temperatures (isothermal temperature mode).

🗎 🖹 💌 🕨	? 🖸 🔻	Analysis - Ak	TS-Thermokinetics	(Thermal Aging, S	afety and Reaction Calorim	try Versions)	*	-	
nu File Th	ermokinetics	RC Acquisition	RC Importation	RC Prediction	Mathematics Functions	View	<pre>bb</pre>			- 8
Predictions Pre Temperature	edictic profiles	ons								×
Iso	Non-Iso	Step	Modulated	Shock	Worldwide STANAG	Custor	nized			
SADT	Thermal	Stability Diagram								
Safety Diagram	TMRad									
isoutermal Condition Isothermal O TTT (time-temperature = ΔT = Number of isotherm Final temperature =	ature-transforma 0 ℃ 5 ℃ := 10 45 ℃	ation) diagram			O Time year ✓ 9.295-2 4.125-1 65.44 Temperature (% Calculate	Reactio .	n Progress	Show results in	one plo	t
Enter applied equip Example : 1e10 * example : 1e10 *	ation (p(-100000/8.314 alpha = reaction	/T) * (1-a)^2 progress				Save	Load	OK		Cancel
exp(50.413) * exp(1.747E+5/8.314/	/T) * (1-a)^2 * a^0		exp(16.28	4) * exp(-72685.671/8.314/T)	* (1-a)^2 * a	^0			
Signal		alpha storage		y_init	y_end	rati	o v1			
Type of signal EX-S	ITU ~	alpha storage 1E-1	0	9.547	0	0.85	i9			
									_	_

FIG. 4 - Quick isothermal prediction: reaction progresses of 0.05, 0.1 and 0.15 (15%) are reached at 2°C after ca. 34 days, ca. 150 days and ca. 65 years, respectively.

💕 Preq	diction	S							
Temperature pro	files								
Iso	Non-Iso	Step	Modulated	Shock	Worldwide	e STANAG	Customized		
Safety Diagram	TMRad	lincy Diagram							
								_	
sothermal condition	s					Quick Iso Prediction		Show results in	one plot
Isothermal						year V	- ~	Combine all axes	5
OTT (time-temperati	re-transformation) (diagram				0.1	1.15E-1		
O TTT (unit: Camperdad						1	1.53E-1		
Temperature =	0 ℃ - 2	2 °C				š 🗗 🏳	2.12E-1		
ΔT =	5 ℃					10	2.74E-1		
Number of isotherms =	10								
Final temperature =	45 °C								
	5 0					Temperature (°C)	20		
						Calculate	Export		
						- 1 -1	Save	., 🥒 ок	X Can
Enter applied equatio	n								
Example : 1e10 * exp(- with [T] = K and a = alo	100000/8.314/T) * (ha = reaction progre	(1-a)^2 ess							
exp(50.413) * exp(-1.7	47E+5/8.314/T) * (1	1-a)^2*a^0		exp(1	5.284) * exp(-7	2685.671/8.314/T) *	(1-a)^2 * a^0		
Signal	alp	ha storage		Y_	init	y_end	ratio v1		
Type of signal EX-SITU	 ✓ alph 	a storage 1E-10		9.	547	0	0.859		
						ime (dav)			~

TKsd Software allows the determination of Temperature-Time-Transformation (TTT) diagram which displays the equivalent time temperature points for which the arbitrarily chosen reaction progress is the same.

TTT plot can be used to determine immediately the time at which the required reaction extent is reached at chosen temperature.

😻 📄 💾 😣 🕩	😧 🖸 🔻	Analysis - AK	TS-Thermokinetics	(Thermal Aging,	Safety and R	eaction Calorime	etry Versions)	T	-	- ×	
Menu File	Thermokinetics	RC Acquisition	RC Importation	RC Prediction	Mather	matics Functions	View 🙌			- 8	×
Predictions Pr Temperatur	edictic e profiles	ons								×	
SADT	Non-Iso Thermal	Step	Modulated	Shock	Worldwide	STANAG	Customized			_	
Safety Diagram	n TMRad	Stubility Diagram								_	
Isothermal cond	itions					Quick Iso Predictio	n				
						Time	Reaction Progress	s			
O Isothermal						year 🗸	a.u. 🗸	1			
TTT (time-temp	perature-transformation	ation) diagram				0.1	8.45				
Temperature =	0 ℃					3	7.78				
		Us	er defined reaction p	rogress for TTT dia	gram	10	6.93				
Δ1 =	1		0.15 (-)	-							
Number of isother (minimum 100)	ns = 101										
Final temperature	= 100 °C					Temperature (°C	:) 20				
							·				
						Calculate	Export	1			
							Save 📄 Load.	🗸 ок	X	Cancel	
Enter applied ed Example : 1e10 * with [T] = K and a	uation exp(-100000/8.314 = alpha = reaction	f/T) * (1-a)^2 progress									
exp(50.413) * exp	(-1.747E+5/8.314/	/T) * (1-a)^2 * a^0		exp(16.28	14) * exp(-72	685.671/8.314/T)	*(1-a)^2 * a^0				
Signal		alpha storage		y_init	t	y_end	ratio v1				
Type of signal EX	-SITU V	alpha storage 1E-1	0	9.547		0	0.859				
admin 🥥 5.	31 Ready							(100%)		_	

FIG. 6 - Calculating "TTT" diagram for different reaction progresses ranging from 0.01 to 0.99. User defined reaction progress 0.15 corresponds to the arbitrarily set shelf life limit (acceptable limit of the change of the measured quantity).

FIG. 7 – "TTT" diagram for the reaction progresses ranging from 0.01 to 0.99 and for user-defined acceptable limit of the change of the measured quantity (shelf-life criterion) set at 0.15 (bold black line).

FIG. 9 – Simulation of the long-term prediction of the change of the material property at temperatures of 2 and 8°C (marked on the curves) during a cold chain storage. Note the severe change of the time of reaching arbitrary chosen drop of measured quantity to 8.28 a.u. from 1.33 to 3 years for 8 and 2°C, respectively. Both temperatures fulfill the cold chain criterion (2°C < T < 8°C).

STEP-WISE TEMPERATURE MODE

📄 💾 🛞	🕨 🤉 🖬 🗧	T (time-temperature-	-transformation) di	agram 3 (Predio	tions) - AKTS-The	rmokinetics (The	rmal Aging, Safety	r and Rea 🖻 🗕 🗖	×
lenu File	Thermokinetics	RC Acquisition	RC Importation	RC Predicti	on Mathemat	tics Functions	View [™]	-	8
We Predictions									×
P Temperat	redictic	ons							
Iso	Non-Iso	Step	Modulated	Shock	Worldwide	STANAG	Customized		_
SADT Cafeby Diagr	Therma TMPad	l Stability Diagram							_
Salety May									_
Stepwise cond	litions							Show regults in one plat	
								Combine all axes	
Time unit day	✓ Time m	ax 345.025 day	Number of cycles	1					
From temp (9	C) To temp (°C) H	eating rate (K/day)	Time (dav)						
5	ି ବି ସ	K/day	45 day	~					
5	°C 30 °C ∷	1000 K/day	0.025 day	X					
30	°C 30 °C 0	K/day	300 day	×					
30	°C °C	K/day	day						
						💾 Sa	ave 📄 Load	🗸 OK 🗙 Cance	el
Enter applied Example : 1e10 with [T] = K and	l equation) * exp(-100000/8.314 d a = alpha = reaction	4/T) * (1-a)^2 progress							
exp(50.413) *	exp(-1.747E+5/8.314	/T) * (1-a)^2 * a^0		exp(16	.284) * exp(-72685	5.671/8.314/T) * (:	1-a)^2 * a^0		
Signal		alpha storage		۷_	init	y_end	ratio v1		
Type of signal	EX-SITU 🗸	alpha storage 1E-1	10	9.5	i47	0	0.859		
admin 🔵	5.31 Ready								-

	Prec	liction	S											
Iso	erature proi	Non-Iso	Step	Modul	ated	Sh	ock	Worldwide	STAN	IAG (Customize	ed		
SADT		Thermal Stab	ility Diagram											
Safety Di	agram	TMRad												
													_	
tepwise o	onditions												Show results in one p	lot
īme unit	day 🗸	Time max 9	0.035 dav	Number	of cycles	1							Compine all axes	
					-,	-								
From tem	p (°C) To ten	np (°C) Heating	rate (K/day)	Time (da	(Y)									
5	°C 5	°C 0	K/day	45	day	X	î							
-						~								
5	°C 20	°C 1000	K/day	0.015	day	~								
20	°C 20	℃ 0	K/day	15	day	X								
					_									
20	°C 30	°C 1000	K/day	0.01	day	×								
30	°C 30	°C 0	K/day	15	day	×								
			Nody		uuy	•	*							
- too	-the disc and the									Save Save	···· 📔	Load	🗸 ОК 🗙	Cancel
Enter ap Example :	plied equation 1e10 * exp(-1	00000/8.314/T) *	(1-a)^2											
vith [T] = K	and a = alph	a = reaction progr	ess											
exp(50.413	3) * exp(-1.74	7E+5/8.314/T) * (1-a)^2 * a^0				exp(16.2	34) * exp(-726	685.671/8.31·	4/T) * (1-a))^2*a^0			
Signal		alp	ha storage				y_ini	t	y_end		ratio v	1		

FIG. 4 - Simulation of the prediction of the deterioration course during: 45 days at 5°C, 15 days at 20°C, 15 days at 30°C, 15 days at 40°C. The value of 15% corresponding to the acceptable limit (8.1 a.u.) is reached after 78 days.

Non-Ise) Step	Modulated	Shock	Worldwide	STANAG	Customized	
Therm	al Stability Diagran	1	Shoun		211010	customized	
im TMRa	d						
tions	max 195.05 day	Number of cycl	es 1				Show results in one plot Combine all axes
) To temp (°C)	Heating rate (K/day)	Time (day)					
5 ℃	0 K/day	45 da	y 🗙 î				
c 30 ℃	1000 K/day	0.025 da	у 🗙				
c 30 ℃	0 K/day	90 da	у 🗙				
c 20 ℃	-1000 K/day	0.01 da	у 🗙				
0 20 ℃	0 K/day	30 da	у 🗙				
			*		E	Save 📄 Load	I VOK XCance
equation * exp(-100000/8.3	314/T) * (1-a)^2						
a = alpha = reacti xp(-1,747E+5/8.3)	on progress 14/T) * (1-a)^2 * a^0		exp	(16.284) * exp(-72685	5.671/8.314/T) *	(1-a)^2*a^0	
	Non-1st Them Time Time To temp (°C) : 5 °C : 30 °C : <td:< td=""> : :</td:<>	Non-Iso Step Thermal Stability Diagram m TMRad tions Image: Stability Diagram To temp (°C) Heating rate (K/day) 1 To temp (°C) Heating rate (K/day) 2 To temp (°C) Heating rate (K/day) 3 @ °C 0 K/day 2 @ °C 0 K/day 2 @ °C 0 K/day 2 @ °C 0 K/day cquation exp(-10000/8.314/T) * (1-a)^2 = a color = reaction progress a color = raction progress a color = raction progress	Non-iso Step Produitated Thermal Stability Diagram Thermal Stability Diagram m THRad V Time max 195.05 day Number of cycl I To temp (°C) Heating rate (K/day) Time (day) Time (day) I To temp (°C) Heating rate (K/day) Time (day) 45 da I To temp (°C) Heating rate (K/day) 0.025 da I 30 °C 0 K/day 90 da I 30 °C 0 K/day 90 da I 20 °C 1000 K/day 30 da I 20 °C 0 K/day 30 da sequation * exp(-10000/8.314/T) * (1-a)^2 a	Non-Iso Step Produlated Shock Thermal Stability Diagram m TMRad V Time max 195.05 day Number of cycles I To temp (°C) Heating rate (K/day) Time (day) I: 5 °C K/day 45 day X I: 30 °C 0 K/day 90 day X I: 20 °C 1000 K/day 90 day X I: 20 °C 0 K/day 30 day X I: 20 °C 0 K/day 30 day X I: 20 °C 0 K/day 30 day X	Non-Iso Step Hodulated Shock Worldwide Thermal Stability Diagram m TMRad TMRad	Non-150 Step Produlated Snock Worldwide STANAG Thermal Stability Diagram m TMRad TMRad Snock Worldwide STANAG tions • Tme max 195.05 day Number of cycles 1 1 To temp (°C) Heating rate (K/day) Time (day) • • 1 To temp (°C) Heating rate (K/day) 0.025 day × • 20 °C 0 K/day 90 day × • 20 °C 0 K/day 30 day × • 20 °C 0 K/day 30 day × • sequation • • • • • • • exp(-100000/8.314/T) * (1-a) ^2 • • • • • • • • •	Non-150 Step Piodulated Snock Workwide STANAG Customized Thermal Stability Diagram TMRad TMRad Customized Customized tions * Tme max 195.05 day Number of cycles 1 1 To temp (°C) Heating rate (K/day) Time (day) * * 30 °C K/day 45 day * 1 To temp (°C) Heating rate (K/day) Time (day) * * 30 °C K/day 45 day * 1 30 °C 0 K/day 90 day * * 30 °C K/day 90 day * * 20 °C 1 * * * * 5 Save * Load sequation * * 20 °C K/day 30 day * * * Load sequation * * * * * Load * * Load * * <td< td=""></td<>

FIG. 6 - Simulation of the prediction of the change of the measured quantity during: 45 days at 5°C, 90 days at 30°C, 30 days at 20°C, 30 days at 5°C. The value of 15% corresponding to the acceptable limit (8.1 a.u.) is reached after 89.3 days.

SADI	71		Step	Modulat	ed	Sho	ck V	Vorldwide	STANAG	Custo	mized			_
afety Diag	ram Ti	hermal Stabili MRad	ty Diagram											-
epwise con	ditions	Time max 75.2	25 dav	Number of	fcvcles	1						Show results in	one plot es	
From temp (°C) To temp (°C	C) Heating ra	te (K/day) K/day	Time (day) 45	day	×	^							
5	°C 30	°C 1000	K/day	0.025	day	×	۰.							
30	°C 30	℃ 0	K/day	1	day	×								
30	°C 5	°C -1000	K/day	0.025	day	×								
5	°C 5	℃ 0	K/day	2	day	X	J							
									!	Save	📄 Load	ј 🧹 ОК	🗙 Car	nce

FIG. 7 - The input of parameters for calculation of the reaction extent for the following temperature profile: 5°C for 45 days, 30°C for 1 day followed by 2 days at 5°C, 30°C for 1 day followed by 2 days at 5°C, 30°C for 1 day followed by 2 days at 5°C, 30°C for 1 day followed by 2 days at 5°C, 5°C for 15 days.

FIG. 8 - Simulation of the prediction of the change of the measured quantity at temperature profile specified in Fig 7. The value of 15% corresponding to the acceptable limit (8.1 a.u.) is not reached during the temperature cycling.

MODULATED TEMPERATURE MODE

nu File	Thermokinetics	RC Acquisition	RC Importation	RC Prediction	Mathemat	ics Functions	View 🙌	- 1
Predictions	redictio	ns						
Temperat	ure profiles	ftan	Modulated	Chack	Warldwida	STANAC	Customized	
SADT	Thermal	Stability Diagram	Hodulateu	SHOCK	wonuwide	STANAG	Custonnizeu	
Safety Diagr	am TMRad	,,						
lodulated or	periodic temperatu	e variations						Show results in one plot
								Combine all axes
Time max 3	year 🗸							
Underlying	Amplitude/2 Fro	nuency Units	Underlying	Nhr of oscillations				
temperature	Ampitude/2 Fre	quericy ornits	heating rate	NOT OF OSCILIAUONS				
5	± 0 ℃ 0	hour \sim	0 K/min	0 (Iso-mode)	×			
20	15 00 24	have in	0 1/1	1 1500	~			
20	e 13 % 24	nour V	K/min	1.1EU3	^			
	⊧ oc	hour ~	0 K/min	Not applicable				
						💾 S	ave 📄 Lo	oad 🗸 OK 🗙 Cancel
Enter applied	equation	T) * (1 =) (2						
ith [T] = K and	a = alpha = reaction p	progress						
(50,412) 8	exp(-1.747E+5/8.314/1	() * (1-a)^2 * a^0		exp(16.28	4) * exp(-72685	.671/8.314/T) * (1-a)^2 * a^0	
5xb(201412) . (
xp(30.413)								
5ignal		alpha storage		y_init		y_end	ratio v1	

FIG. 1 - The option 'Modulated' allows to predict the reaction extent at two temperature modes (i) storage in a cold chain at 5°C (i.e. isothermal mode) and
(ii) storage at ambient conditions of 20°C with daily temperature fluctuations of ±15°C.

FIG. 2 - The value of 15% corresponding to the acceptable limit (8.1 a.u.) is reached after 2.2 months under ambient temperature conditions (i.e. 20°C) with daily fluctuations of ±15K (red curve). In the cold chain (blue line) the limit is not reached during 3 years.

- WORLDWIDE REAL ATMOSPHERIC TEMPERATURE PROFILES-

FIG. 2 - The value of 15% corresponding to the acceptable limit (8.1 a.u.) is reached after 17.8 months in New York (red lines) and 31.7 months in Zurich (blue lines), respectively.

STANAG CLIMATIC CATEGORIES

FIG. 1 – "STANAG" allows to predict the reaction course in places with different STANAG climate categories.

FIG. 2 - The value of 15% corresponding to the acceptable limit (8.1 a.u.) is reached after 1.3 months in STANAG climate category A1.

USER CUSTOMIZED TEMPERATURE MODE

Menu	File File Prince	 ? Thermokinetics ediction 	Analysis RC Acquisitio	- AKTS-Thermokinetics	(Thermal Aging, RC Prediction	Safety and Re Mathem	eaction Calorimet	ry Versions) View ↔	E – D ×
T Safe	Temperatu Iso ADT aby Diagram	re profiles Non-Iso Therma	Step I Stability Diagr	Modulated am	Shock	Worldwide	STANAG	Customized	
S/ S/ Ei	rtation of o Open custor Z Zeit	customized temp	erature profiles	Humidity			Time Column 1 Unit h Temperature Column 3	× ×	Show results in one plot Combine all axes
1 2 3 4 5	1 2 3 4 5	2 0 3600 7200 10800 14400	3 19.378 19.335 19.351 19.355 19.335 19.318	4 38.2 38.9 39.6 39.8			Unit Column - Column - Unit % Repeating tempera	v v ture profile	
Ent Exam with [exp(5	ter applied e ple : 1e10 * T] = K and a 50.413) * ex	quation exp(-100000/8.314 = alpha = reaction p(-1.747E+5/8.314	4/T) * (1-a)^2 progress /T) * (1-a)^2 * a/	~0	exp(16.28	84) * exp(-726	85.671/8.314/T) *	Save	d VK XCancel
Sign Type	al of signal D	(-SITU ~	alpha storag alpha storage	e 1E-10	y_ini 9.547	t	y_end 0	ratio v1 0.859	

The influence of the temperature fluctuations on the reaction course can be evaluated for any customized temperature profiles recorded by e.g. commonly applied data loggers that collect the temperature and humidity during a chosen period.

FIG. 2 - The change of the material properties at temperature profile recorded by data logger: the value of 15% corresponding to the acceptable limit (8.1 a.u.) is not reached after ca. 8 months.

MIXED TEMPERATURE MODES

FIG. 1 - The "Mixed"-function allows to combine consecutively the different temperature conditions. This example displays the prediction of the decomposition course the following temperatures: recorded by the data logger, isothermal (5°C, characteristic for the cold chain) and daily climate fluctuations.
 The value of 15% corresponding to the acceptable limit (8.1 a.u.) is reached after 13.7 months at these temperature fluctuations.

KINETIC ANALYSIS BASED ON NOISY SPARSE DATA

FIG. 1 - Noisy, sparse data collected at 5, 25, 37 and 45°C.

😻 📄 💾 😣 I	🕨 🖸 🔽 🔻	AKTS-Therm	okinetics (Therm	al Hazard, Aging, Safety an	d Reaction C	alorimetry Versions)	1 1 1		i ×
Menu File	Thermokinetics	RC Importation	RC Prediction	Mathematics Function	s View	💡 Type a command to execute			
*									×
📥 Kine	tics								
Best model selec	tion		E	Experimental data					
Automatic (this Custom	process may take se	veral minutes)	C @ a) Consider all data) Consider data from 0 Ind Tmin 4.9999999 <= T (until 100 °C) <= Tmax	day V 45			
Initial value : y_i	nit	End value : y_end	a	ind y_min 3.9 <= y <	<= y_max	10			
⊻y_init 10	a.u.	y_end 0	a.u. /	Alpha storage					
Models				Alpha storage 1E-10					
1 step			1	Humidity					
				Save	Load	C Reset parameters	🗸 Optimizati	on 💙	Cancel
admin	521 Peadu		40 60 80 10 Time (di	00 120 140 160 180 ay)		2 - 0 10 20 30 40 50 Time (da	, , , , , , , , , , , , , , , , , , ,	0 90	
aunin 🥑	Neauy								

FIG. 2 - During determination of the best kinetic model one can change the range of data used in the kinetic analysis.

FIG. 3 - Kinetic parameters are determined for all considered models, fit of experimental points (solid circles) is displayed for the best model. Only the experimental points recorded until 100 days were considered during the kinetic analysis. The experimental points collected after 180 days (empty circles) serve for verification only.

DETERMINATION OF PREDICTION BANDS (E.G. 95% CONFIDENCE) AND VERIFICATION OF THE PREDICTIONS

The prediction bands are determined by the bootstrap method which is based on Monte Carlo approach frequently used in applied statistics. For the statistical analysis one can choose between resampling the residuals or data points.

FIG. 1 - Determination of prediction bands (95% confidence). For the statistical analysis one can apply the residuals or the data points.

The plots below show the prediction of the reaction course at 5°C based on the best kinetic model evaluated from the data collected at 45, 37, 25 and 5°C (filled circles). The data points collected after 180 days serve for the verification of the predictions. The dashed lines depict the prediction bands with 95% confidence.

FIG. 2 - Prediction of the change of the material property at 5°C. The experimental points recorded after 6 months, which were not considered during kinetic analysis, serve for the verification of the predictions. With 95% probability all experimental points fall in the prediction band.

FIG. 4 - Prediction of the change of the material property at 37°C. The experimental points recorded after 6 months, which were not considered during kinetic analysis, serve for the verification of the predictions.

FIG. 5 - Prediction of the change of the material property at 45°C. The dashed lines depict the prediction bands with 95% confidence.

--- PREDICTION OF THE CHANGE OF MATERIAL PROPERTIES ----WITH THE PREDICTION BANDS AT RANDOMIZED TEMPERATURE FLUCTUATIONS

AKTS Thermokinetics Sparse Data software (TKsd) allows simulation of the stability of the materials and their degree of degradation under any temperature conditions occurring during their storage and transport before the final use. The software evaluates by the bootstrap method the prediction bands with 95% confidence (dashed lines in the plot).

FIG. 1 - Influence of daily climate fluctuation temperatures (here Las Vegas) on the reaction extent. The dashed lines depict the prediction bands with 95% confidence.

Ten	Pre apperature p	dictic rofiles	ons														
Is	50	Non-Iso	Ste	p M	odulated	Sho	ck	World	wide		STANAG	<u> </u>	istomize	d			_
Safety	Diagram	TMPad	Stability Dia	gram													-
Salety	Diagrain	TPIKdu															-
															Statistics		-
Importa	tion of cust	omized temp	erature profi	es												- 4	
📔 Ope	n customized	profile								Time					with prediction ba	nu	
	Z							-	~	Column	1	~			with y_min <= y	U	
S/										Unit	h	\sim			with y <= y_max	9.565	
Be										Tempera	ature				Prediction band	95	
Ei	Zeit		Temperature	Humid	lity					Column	3	~					
									~	Unit							
	1	2	3	4					~	Onic	- C	Ŷ					
1	1	0	19.378	38.2						Relative	humidity						
2	2	3600	19.335	38.9						Column		~					
3	3	7200	19.351	38.9						Unit	%	\sim					
4	4	10800	19.335	39.6						Repeati	ng temper	ature pr	ofile				
5	5	14400	19.318	39.8						Number	of cycles	1					
c	4	10000	10 070	50 O					v			-					
Enter a Example with [T] = exp(55.4	applied equat : 1e10 * exp = K and a = a 195) * exp(-1	ion (-100000/8.314 lpha = reaction .882E+5/8.314/	4/T) * (1-a)^2 progress /T) * (1-a)^2 *	a^0			exp(15.8	351) * ex	p(-71	593.568/	/8.314/T) ⁻	* (1-a)^	2*a^0				
Signal			alpha stora	ige			y_in	it	_	y_e	nd		ratio v1				
Type of s	agnal EX-SI	10 V	alpha storage	1E-10			9.56	5		0			0.855				

FIG. 3 - The influence of the temperature fluctuations recorded by commonly applied data loggers on the reaction course. The dashed lines depict the prediction bands with 95% confidence.

FOR FURTHER INFORMATION VISIT: www.akts.com/tksd

 Phone
 +41 848 800 221

 Email
 info@akts.com

AKTS SA Technopôle 1 3960 Sierre Switzerland

