

THERMOKINETICS Software (TK)

Evaluation of Kinetic Parameters from Conventional Thermoanalytical Data

CONTENT

AKTS E-Learning

www.akts.com/tk/e-learning

TABLE OF CONTENTS

DATA ANALYSIS

Data collection and importation	3
Baseline construction	10
Differential isoconversional kinetic analysis	
Tool 'simulation' and 'optimization'	29
Saving the 'kinetic project file' (*.kpf)	33

PREDICTIONS

sothermal	35
Non-isothermal	39
Step-wise temperature mode	41
Modulated temperature mode	42
Worldwide real atmospheric temperature profiles	43
Stanag climatic categories	44
User customized temperature mode	45
Sample controlled thermal analysis	46

AKTS E-LEARNING DATA ANALYSIS

DATA COLLECTION AND IMPORTATION

The THERMOKINETICS software (TK) permits the evaluation of kinetic parameters from thermoanalytical data. TK allows the kinetic analysis of the variety of chemical reactions and physical processes from the simplest one-step to multi-step reactions. TK has been developed to offer advanced treatment of any thermoanalytical data independent of its kind. The software can work with the data collected by all types of thermoanalyzers of reputable manufacturers available on the market. With TK it is possible to correctly describe kinetics of complex reactions within few minutes only.

The following screen captures and notes present the workflow of the kinetic analysis based on DSC experiments carried out in non-isothermal conditions.

FIG. 1 - Enter password to start the AKTS-Thermokinetics software (TK).

😽 📄 💾 🛞 🕪 😧 🖬		netics (Thermal Hazard, Aging, Safety and Reaction	on Calorimetry Versions)	A _ 0	×
Menu File Thermokir	netics RC Acquisition R	C Importation RC Prediction Mathemat	i cs Functions View 💡 Type a com	imand to execute	
Load Kinetic Project Kinetic Project File	Import ASCII Data Data Importation	Open Single Zone Save Single Zone As Save Single Zone As Save Single Zone As	Print Chart		~
,	Import ASCII Data				
	Load one or more files which in text format (ASCII).	n are			
admin 🥥 5.2 Read	ly				

FIG. 3 - Importation of thermoanalytical data (DSC, TGA, etc.) in ASCII-format (.txt).

(1) The meaningful kinetic analysis requires performing four-five DSC experiments measured at e.g. 0.5, 1, 2, 4 and 8 K/min followed by the construction of the baseline. (Remark: DSC runs under isothermal conditions (i.e. 0K/min) can be also evaluated by the TK Software).

(2) The option 'Import ASCII Data' allows the importation in ASCII-format of any thermoanalytical data independent of its kind.

Image: Second state of the second s	AKTS-Thermokin cs RC Acquisition R Import SCII Data. Data Importation	etics (Thermal Hazard, A C Importation RC Pri Content of the Content Save Single Zone Save Single Zone A Single	ging, Safety and Reactic ediction Mathemat Importations Exportations Merging Zone	In Calorimetry Versions) ics Functions View Print Chart ics Capture Chart Export Chart Data Exportatio	Type a com M Adapt Charts Resolution	mand to execu	te ×	*
← → * ↑ 📑 > 1	This PC → Windows (C:) →	AKTS version 5 > save		ٽ ~	Search save		Q	
Organise 🔻 New fo	der						?	
	Name	^	Date modified	Туре	Size			
🖈 Quick access	Curve 1.txt		05/07/2016 18:26	Text Document	294 KB			
 OneDrive 	Curve 2.txt		05/07/2016 18:26	Text Document	331 KB			
This PC	Curve 3.txt		05/07/2016 18:26	Text Document	345 KB			
	Curve 4.txt		05/07/2016 18:26	Text Document	366 KB			
Network	Curve 5.txt		05/07/2016 18:25	Text Document	290 KB			
File	name: ^{°°} Curve 5.txt [°] ^{°°} Curve	1.txt" "Curve 2.txt" "Curv	ve 3.txt" "Curve 4.txt"	~	Text Files (*.br	t)	~	
admin 5 .2 Ready					Open	Canc		

FIG. 4 - Selection of the required data files.

* * * * * * * * * * * * * * * * * * *	∓ AK	TS-Thermokinetic	s (Thermal Hazard, Ag	ging, Safety and Reaction Calorime	try Versions)	🖈 🗕	• ×
Load Kinetic	🖗 🚺	ort ASC	II File		×	nand to execute	
Project Project	Current File						
Kinetic Project File	C:\AKTS versi	on 5\save\Curve 5.	bxt				^
	File Header				Hide Header Hide Grid		
	Curve 5 Initial mass: 6.66 t(s)	mg Sample T(°C)	HeatFlow (W/g)		Î		
					×		
	1	2	3		^		
	1 0	38.466	2 -0.280029				
	2 0.	2004 38.492	5 -0.280122				
	3 0.	4002 38.519	1 -0.280217				
	4 0.	6 38.546	5 -0.28031				
	5 0.	8004 38.573	3 -0.280386				
	6 1	0007 38 500	s _0.78045		*		
	Melting Te	emperature) temperature (if av	ailable) ℃				
	L Temperat	ure	9 Time	🖂 Signal	Initial Mass		
	Ocolumn -	~ (olumn - 🗸	Column -	⊻ 0 mg ∨		
	Units °C	~ L	Inits - ~	 Continuous data collection Discontinuous data collection 	Molar Mass		
	O If no column w	ith temp.		Type of signal UNKNOWN	√ 0 g/mol		
	Set temperatur	eas℃	ilter 1 points	Units Name Unknown			
admin 🔵 5.2	File Templates		Choose	~ X	Import Cancel ?		

FIG. 5 - Selection of the properties.

After selection of the data files for further elaboration, one has to specify the properties of temperature and time columns and the type of the measured signals.

😽 📄 💾 🛞 🕪 🕜 I	₹ ₹	AKTS-Thermokir	netics (The	rmal Hazard, A	ging, Safety and Reaction Calorimetr	y Versions)	A _	n x
Menu File Thermo	okir 🐅					×	mand to execute	
Load Kinetic Project	lm	port AS		File				
Kinetic Project File	Current File	ercion Elcavel/Curr	ua E tyt					~
	File Header	ersion 5 pave (cur	ve 5.00]	Hide Header Hide Grid		
	Curve 5 Initial mass: 6 t(s)	.66 mg Sample T(°C	i) Hea	tElow (W/g)		· · · · · · · · · · · · · · · · · · ·		
	1	1 2	4662	3		^		
	2	0.2004 38	3.4925	-0.280122				
	3	0.4002 38	8.5191	-0.280217				
	4	0.6 38	8.5465	-0.28031				
	5	0.8004 38	8.5733	-0.280386				
	6	1 0002 38	5006	-0.28045		×		
	/ Melting	g Temperature	(if available))°C				
	🔒 Tempe	erature	U T	me	🖂 Signal	Initial Mass		
	Column	2 ~	Column	1 ~	Column 3 ~	6.66 mg ~		
	Units	°C ~	Units	s v	Continuous data collection	Molar Mass		
	O If no colum	n with temp.			Upiscontinuous data collection	0 a/mol		
	Set temper	ature as C			Lipite	g/mor		
			Filter	1 points	w/g 🗸	Exo direction		
					Name HeatFlow			
	File Template	s						
	Enter a name	e	E	Choose	~ 🗙 🖌 In	nport 🗙 Cancel ?		
admin 🔵 5.2			_					

FIG. 6 - Indication of signal type and input of sample mass.

Finally, the type of signal and an initial sample mass has to be introduced. (Remark: As shown in the next figures, the input of further data can be facilitated by just updating the sample mass only).

😽 📄 💾 😣 🕪 🕢 🖂	Ŧ	AKTS-Thermo	kinetics (The	rmal Hazard, A	ging, Safety and Reaction Calorimetr	y Versions)		ħ	- 🗆	×
Menu File Thermoki	*						×	mand to	execute	
Load Kinetic Project Project		iport A	SCII	File						
Kinetic Project File	C: AKTS	version 5\save\C	urve 4.txt							^
Importations	File Header					Hide Header	Hide Grid			
Soft Kimin Curve 5	Curve 4 Initial mass: 1 t(s)	7.49 mg Sample T(°C) Hea	atFlow (W/g)	1		^			
							¥			
		1	2	3			^			
	1	0	30.0249	-0.133889						
	2	0.3	30.0448	-0.13389						
	3	0.6	30.0647	-0.133919						
	4	0.9	30.084	-0.133956						
	5	1.2	30.1041	-0.133994						
	6	15	30 1047	.0 134010			•			
	Introduce me	ig Temperatur elting temperatur	e e (if available)°C						
	💧 Temp	erature	U T	ime	🖂 Signal	Initial Ma	155			
	Column	2 ~	Column	1 ~	Column 3 🗸	7.49	mg 🗸			
	Units	°C ~	Units	s v	 Continuous data collection 	Molar Ma				
	O If no colun	nn with temp.			O Discontinuous data collection					
	Set temper	rature as	°C Filter	1 points	Units W/g ~	Exo direct	tion			
					Name HeatFlow					
	File Template	es		Channel		aport 🖌	Cancel			
admin 🥥 5.2	Critter a nam	IC		Choose			Carleer ?		_	

FIG. 7 - Introducing sample mass.

😻 📄 💾 🙁 🕪 🕢 📼		okinetics (Thermal Hazard, A	ging, Safety and Reaction Calorimetr	y Versions)	团 – □ ×
Henu File Thermokin KPF Load Kinetic Project Project	Import A	SCII File		×	mand to execute
Kinetic Project File ■ Importations ■ ▷ 0.01 Kmin Cuve 5 > X Temperature > ✓ HeatFlow ■ ▷ 4 Kmin Cuve 4 > X Temperature > ✓ HeatFlow	C:\AKTS version 5\save\C File Header Curve 3 Initial mass: 9.69 mg T(5) Sample T	Curve 3.txt (°C) HeatFlow (W/g)		Hide Header Hide Grid	
	1 1 0 2 0.498 3 1.002 4 1.602 5 2.202 6 2.802 Ø Helting Temperatur Introduce melting temperatur	2 3 30.4217 - 0.09319 30.4381 - 0.093129 30.4552 - 0.093091 30.4749 - 0.09307 30.4749 - 0.09307 30.4749 - 0.09307 an 515 - 0.09305 an 515 - 0.09307 an 515 - 0.09307 an 515 - 0.09307 an 515 - 0.09307 an 515 - 0.09319 an 515 - 0.09317 an 515 - 0.		Ŷ	
	Column C	Column 1 ~ Units s ~ Filter 1 points	Signal Column 3 © Continuous data collection Obscontinuous data collection Type of signal Units DSC Units W/g V	Initial Mass 9.69 mg ∨ Holar Mass 0 g/mol Exo direction ● ▲ ○ ♥	
admin 5.2	File Templates Enter a name	Choose	~ 🗙 🗸	nport XCancel ?	

FIG. 8 - Introducing sample mass.

😽 📄 💾 😣 🦛 🕜 🗵	Ŧ	AKTS-Thermo	kinetics (The	ermal Hazard, Ag	ging, Safety and Re	eaction Calorimetr	y Versions)		A _		×
Menu File Thermokir	*							×	mand to execute		
Load Kinetic Project Project	Current File	port A	SCII	File							
Kinetic Project File	C: (AKTS)	version 5\save\Ci	urve 2.txt								^
Importations ▷ ♥ 8.01 K/min Curve 5 ▷ ➤ Temperature ▷ ♥ HeatFlow ▷ ♥ 4 K/min Curve 4 ▷ ➤ Temperature ▷ ♥ HeatFlow ▷ ♥ Z K/min Curve 3 ▷ ♥ Z K/min Curve 3	File Header Curve 2 Initial mass: t(s)	7.56 mg Sample T(°C) He	atFlow (W/g)		[Hide Header	Hide Grid			
► HeatFlow			2	0							
	1	0	2 28.1724	-0.062122							
	2	1.2	28, 1914	-0.062107							
	3	2.4	28.2113	-0.062095							
	4	3.6	28.2315	-0.062029							
	5	4.704	28.2501	-0.06196							
	6	5 802	78 7683	-0.061037				¥			
	Meltin Introduce me	ig Temperature elting temperatur	e (if available	e) °C							
	💧 Temp	erature	U T	ïme	🖂 Signal		Initial Ma	55			
	Column	2 ~	Column	1 1 ~	Column	3 ~	7.56	ma 🗸			
	Units	°C ~	Units	s v	 Continuous da Discontinuous 	ta collection data collection	Molar Ma	55			
	O If no colun	nn with temp.			Type of signal	DSC 🗸	0	g/mol			
	Set temper	rature as	°C		Units	w/a ~	Exo direc	tion			
			Filter	1 points							
					Name HeatFlow			••			
admin 🔵 5.2	File Template	es 10	Ľ	Choose		~ 🗙 🖍 In	nport 🗙	Cancel ?		_	

FIG. 9 - Introducing sample mass.

😽 📄 💾 🛞 🕪 🕜 📼		-Thermokinetics (Th	ermal Hazard, A	ging, Safety and Rea	ction Calorimetry	Versions)			- 🗆	×
Menu File Thermoki	· 🐦						×	mand to ex	ecute	
Load Kinetic Save Kinetic Project Project Kinetic Project File	Current File		File							^
Importations ▶ ♥ 8.01 K/min Curve 5 ▶ ♥ 7 emperature ▶ ♥ 4 K/min Curve 4 ▶ ♥ 7 emperature ▶ ♥ 7 emperature	File Header Curve 1 Initial mass: 11.28 n t(s)	ng Sample T(°C) Hi	eatFlow (W/g)		H	lide Header	Hide Grid			
 ▶ I HeatFlow ▶ I Kinin Curve 2 > X Temperature ▶ I HeatFlow 	1 1 2 2,28 3 4,68 4 7,02 5 9,3 6 117 Melting Ten Introduce melting t	2 31.183 31.202 31.2216 31.2413 31.26 31.260 31.260 31.260 31.260 31.260 31.260 31.260 31.260 31.260 31.260 31.260 31.260 31.260 31.260 31.2216 31.221	3 -0.03869 -0.038517 -0.038363 -0.038245 -0.038157 -0.038157 -0.038157				~			
	Column C	e O Colum ∨ Units temp. as ℃ Filter	Time In 1 v s v 1 points	Signal Column Continuous data Discontinuous data Discontinuous dat Units V Name HeatFlow	3 a collection sta collection DSC N/g	Initial Ma 11.28 Molar Ma 0 Exo direct • A	ss mg ∨ ss g/mol tion			
admin 5.2	File Templates	8	Choose			ort 🗙	Cancel ?	-		

FIG. 10 - Introducing sample mass.

FIG. 11 - DSC curve at 0.5 K/min.

After finishing data import, the labels of the curves are visible in the tree view under 'Importations' and the required signals can be selected to construct the baseline. The user has to construct two baselines only (generally for the first and last curve), for the remaining curves an automatic procedure can be applied.

BASELINE CONSTRUCTION

FIG. 1 - Baseline construction.

The baseline construction starts with a placing the cursor on the signal (the cursor icon should switch to a hand symbol) followed by the right click on the graph and selecting the option 'Baseline construction'.

FIG. 2 - Type of baseline.

After selecting 'Baseline Construction' the window 'Baseline' opens and the type of baseline can be chosen. (Remark: it is recommended to use the Baseline type 'Tangential Sigmoid' for nonisothermal runs and 'Horizontal' or 'Horizontal last point' for isothermal runs).

Next one has to select the left and right temperature limits between which the baseline will be constructed (integration limits).

The calculation of the baseline course proceeds automatically.

FIG. 3 - Left temperature limit.

The left temperature limit indicates the point at which the heat flow curve starts to climb or descent in exo- or endothermic signals, respectively, and begins to deviate from the baseline. The choice of the left limit significantly depends on the sensitivity of the thermoanalytical device and shape of the measured signal.

FIG. 4 - Right temperature limit.

The right temperature limit should be placed at the end of the peak(s), where the signal returns to the baseline. A partial integration of the signal is also possible by choosing arbitrarily the right temperature limit at any temperature higher than left temperature limit.

FIG. 5 - Improper baseline construction.

FIG. 6 - Opening the 'Baseline' window for manual baseline adjustment.

In case of applying 'Tangential Sigmoid' a double check of the tangents is required before continuing because it can happen that a manual adjustment is needed (see above). In this case, one has to select the baseline (double click) and change the tangents at chosen left and right temperatures accordingly. (Remark: the tangents can be only modified if the window 'Baseline' is visible).

FIG. 7 - Adjustment of the tangent at left temperature limit.

FIG. 8 - Adjustment of the tangent at right temperature limit.

FIG. 9 – Final course of the baseline.

After final adjustment of the baseline, the window 'Baseline' can be closed.

FIG. 10 - DSC curve at 8 K/min.

Next step is the construction of the second baseline, usually for the curve recorded with the fastest heating rate, i.e. in this example 8 K/min.

FIG. 11 - Evaluation of left temperature limit at 8 K/min.

The construction of the baseline is performed in the same way as already explained before. The blue tick mark (see red square) placed on the signal represents the temperature of the left limit of the baseline chosen for the lowest heating rate of 0.5 K/min. The position of this limit helps to select the left temperature limit for 8 K/min, which has to be placed at temperature higher than for signal recorded at 0.5 K/min. (Remark: in general, by increasing scanning rates the temperature ranges of the reaction are shifted to higher temperatures. Therefore, the left and right temperature limits for the remaining signals should be placed between those chosen for the lowest and highest heating rates i.e. 0.5K/min and 8 K/min, respectively.

FIG. 12 - Final course of the baseline at 8 K/min.

FIG. 13 - Automatic baseline construction.

For the remaining signals the option 'Automatic Baselines' is applied to construct the missing baselines automatically. However, it is necessary to check all curves after automatic option if an additional manual adjustment is required or not. It is necessary to check visually the constructed baselines if the tangents at left and right limits are in-line with the signals. Secondly, the standard deviation of the reaction heat determined at all heating rates should not exceed 10% because higher deviations may indicate or poor data quality or incorrect baseline construction.

FIG. 14 - Baseline construction at 1 K/min.

FIG. 16 - Baseline construction at 4 K/min

FIG. 1 - Start of the kinetic analysis.

After checking correctness of the baseline constructions, the user can begin the kinetic analysis of the recorded data. The differential isoconversional analysis starts after choosing the tool "Kinetics", see red square marked above.

FIG. 2 - Reaction extent alpha as a function of temperature for all heating rates.

In the first stage the reaction extent vs temperature is calculated in the form of α -T dependence (plot above).

FIG. 3 - Reaction rates as a function of temperature for all heating rates.

In the second stage the plot showing the dependence of the reaction rate on temperature at all heating rates is created.

FIG. 4 - Differential isoconversional analysis.

In the third stage the logarithms of the reaction rates are presented as a function of the reciprocal temperature for the different heating rates.

In the differential isoconversional analysis, the slopes and intercepts of the lines drawn through the isoconversional points (points at which the values of the reaction extents 'alpha' are the same) at different heating rates enable the determination of:

- The activation energy E(alpha),
- The term combining the pre-exponential factor A(alpha) with the f(alpha) i.e. the kinetic model in the form:
 - In(A(alpha) f(alpha))

FIG. 6 - Option 'Adjust Axes Vertically'.

For a better presentation of the dependence of kinetic parameters on the reaction progress one can split both curves with the option 'Adjust Axes Vertically' by placing the cursor on the panel and right click.

FIG. 7 - Display the dependence of the kinetic parameters on the reaction progress after action "Adjust Axes Vertically".

FIG. 8 - Warnings indicating that the criteria of proper construction of the baseline are not fulfilled.

Improper construction of the baselines may significantly influence the results of the kinetic analysis. In AKTS TK Software two criteria have to be fulfilled in order to evaluate the meaningful kinetic parameters:

- ► **Criterion 1:** The average correlation coefficient R of all straight lines plotted in isoconversional coordinates should amount to at least -0.99
- Criterion 2: Standard deviation of the reaction heats determined at all heating rates should not exceed 10%

In TK Software, two methods for improving the baseline construction may be applied:

- Manual adjustment of the baselines
- Optional: 'OBsl' = Optimize Baselines = Automatic adjustment of all baselines

Remark: the user should always try manually to improve the baseline construction first before proceeding with option 2, because 'OBsl' can be used only for fine-tuning. In case of an incorrect, illogical baseline (see below), it makes no sense to start the automatic adjustment because the construction is too far away from the optimal ones. Figure 8 shows the case when both criteria are not fulfilled what is indicated by the warnings displayed in red.

FIG. 9 - Improper baseline construction.

Improper baseline construction for the signal recorded at a certain heating rate which is not consistent with other baselines influences the course of α -T dependence and results in improper kinetic data. Warnings Low Value! or deviation > 10% appear if criteria 1 or 2 are not fulfilled.

Optionally the user can try to improve and optimize the construction of the baselines by using the corresponding tool marked by red square below. This procedure is slightly changing the tangents at the left and right limits for the signals recorded at all heating rates in order to improve the criterion 1 (R-value) by achieving a value closer to -1. (Remark: If the R value after manual adjustment is already close to -1 the user can skip this option).

FIG. 10 - Corrected baseline.

FIG. 11 - Optimization of the baselines (Fine-tuning).

After baseline adjustment the kinetic parameters are calculated and used to simulate and display the reaction progress for all measured heating rates. This procedure starts after choosing the tool 'Simulation', see below.

TOOL 'SIMULATION' AND 'OPTIMIZATION'

FIG. 1 - Tool 'Simulation' applying the kinetic parameters for simulation the reaction course at different heating rates.

FIG. 2 - Tool" Simulation" - Comparison of simulated (black) and experimental (coloured lines) reaction rate at 8K/min (top) and reaction courses at different heating rates (bottom).

The thermoanalytical peak (e.g. the signal of a heat flow rate as in a case of DSC) is placed between the points of departure from (left limit) and return to the baseline (right limit). The choice of such point significantly depends on the sensitivity of the thermoanalytical device and shape of the measured signal. The temperature of the reaction beginning, increases when the heating rate increases. Often the beginning and the end of the recorded signal are not well defined, therefore the reliable information concerning the reaction course are generally possible in the range of alpha between 0.01 and 0.99.

The better prediction can be achieved after further optimization of the kinetic parameters.

FIG. 3 - Optimization for final adjustment of the kinetic parameters

The tool **'Optimization'** (marked in red above) opens a popup window allowing optimization of the kinetic parameters.

FIG. 4 - Start of the optimization procedure.

The optimizing procedure starts by choosing the "Optimize" Tool (marked in red, see above).

In general, 100 loops are enough to achieve a good fit between simulations (black) and measurements (coloured curves). In case of any doubts, the user can repeat the optimization procedure or undo it.

Remark: if both criteria (R value and standard deviation of the reaction heat) are fulfilled, the user can expect a good fit of experimental signals by simulated curves. If this is not the case, further optimization is needed, i.e. more optimization loops than 100 are necessary.

FIG. 5 - Optimization procedure finished.

After adjustment of the kinetic parameters the simulations (black curves) fit much better the experimental reaction course. The user can close the optimization window and continue with saving results of the kinetic analysis.

SAVING THE 'KINETIC PROJECT FILE' (*.KPF)

FIG. 1 - Saving the 'kinetic project file' (kinetic analysis data).

Before using the final results of the kinetic analysis for further predictions, one should save the kinetic analysis / kinetic project file (= *.kpf file). The kinetic data can be saved using **"Save Kinetic Project"** Tool (marked in red).

₩ [) 💾 😣 🕪 🕜 🖂		etics (Thermal Hazard, A	ging, Safety and Reactio	n Calorimetry Versions)		A _ D	×
Menu Load Proj	File Thermokin File Thermokin File Save Kinetic Project Save Kinetic Project File	Import ASCII Data by of data Data Importation	C Importation RC Pro	ediction Mathemati	cs Functions View Print Chart I Capture Chart C Export Chart Data Exportatio	Adapt Charts Resolution	nand to execute	^
- 🚺 + = + =	Save As ← → \land ↑	> This PC > Windows (C:) >	AKTS version 5 > save		ڻ ~	Search save	د م	
•	Organise ▼ New	folder Name	`	Date modified	Туре	Size	≣≕ ▼ (?	J
• • • • • • •	 OneDrive This PC Network 			No items match yo	ur search.			
	File name: Save as type: K	Vebinar inetics Project Files (*.kpf)				Save	Cancel	
adn	nin 5 ,2 Readu		100 1	20 140 Temperat	160 18 Jre (*C)	0 200	220	

FIG. 2 - Saving the file.

FIG. 3 - Prediction mode.

Finally, the user can start the prediction of the reaction rate and progress at any temperature profiles by using the tool **'Prediction'** marked in red.

AKTS E-LEARNING PREDICTIONS

ISOTHERMAL

For the prediction of the reaction course at any temperature profile click the icon "Prediction".

Below the predictions at different temperature profiles are presented.

FIG. 1 - For the prediction of the reaction course at isothermal conditions click bar "Iso".

😻 Predictions								×
📝 Pred	dicti	ons						
Temperature pro	ofiles	Sample controlled t	nermal analysis					
Iso	Non-Iso	Step	Modulated	Shock	Worldwide	STANAG	Customized	
SADT	Therm	al Stability Diagram						
Safety Diagram	TMRad	1						
Automatic Report								
Isothermal condition Isothermal 	s ure-transforr 50 °C 5 °C 10	mation) diagram	imum heat release	rate		Quick Iso Prediction Time min	O Reaction Progress	✓ Show results in one plot ✓ Combine all axes
Final temperature =	95 °C	2				Temperature (°C) Calculate	20 Export	
							Save 📄 Load.	🗸 OK 🗙 Cancel

FIG. 2 - Introduce the lowest required temperature (in presented example 50°C), the temperature difference between the isotherms (here 5°C) and specify the number of isotherms (here 10). It is also possible to calculate the maximal heat release rate.

FIG. 3 - Calculated reaction rates (bottom graph) and progresses (normalized signals) as a function of time under isothermal conditions. The values of the temperature in °C are marked on the curves.

FIG. 4 - Dependence on the maximal heat release rate on temperature.

TK Software allows determination of Temperature-Time-Transformation (TTT) diagram which displays the equivalent time temperature points for which the arbitrarily chosen reaction progress is the same.

FIG. 5 - The plot presents the general idea of TTT diagram for the one-stage reaction with arbitrarily chosen kinetic parameters. The reaction extent of 50% is reached after 38 min at 125°C and after ca. 8 days at 50°C.

W Predictions								×
Precent	dicti	ons						
Temperature pro	ofiles	Sample controlle	d thermal analysis					
Iso	Non-Isc	o Step	Modulated	Shock	Worldwide	STANAG	Customized	
SADT	Therm	al Stability Diagra	n					
Safety Diagram	TMRa	d						
Automatic Report								
Isothermal condition Isothermal TrT (time-temperature = $\Delta T =$ Number of isotherms = (minimum 100)	ure-transfor 20 ° 2 ° 101	mation) diagram C 🛨 C	User defined reaction ;	progress for TTT	diagram	Quick Iso Prediction Time min	O Reaction Progress	Show results in one plot Combine all axes
Final temperature =	220 °	с				Temperature (°C) Calculate	20 Export	
							Save 📄 Load.	🗸 OK 🗙 Cancel

FIG. 6 - For building the TTT diagram uncheck the option "isothermal" and check the option "TTT".

FIG. 7 - Temperature-Time-Transformation (TTT) diagram.

The TTT diagram for the reaction having the same kinetic parameters as those used for the isothermal predictions displayed in Fig.3. Note logarithmic time-scale on the plot. Half of the material (reaction extent of 50%) is decomposed in 1 day at 74°C and after 9,2 days at 50°C.

NON-ISOTHERMAL

😻 Predictions									×
🧭 Pre	dictio	on	S						
Temperature p	rofiles	Sar	nple controlled t	hermal analysis					
Iso	Non-Iso		Step	Modulated	Shock	Worldwide	STANAG	Customized	
SADT	Therma	l Stabi	lity Diagram						
Safety Diagram	TMRad								
Automatic Report									
Non-isothermal con	ditions								Show results in one plot
Non-isothermal									Combine all axes
O Double scanning tes	t (DST)								
Starting temperature	60 °C								
Heating rate (K/min)									
		~							
U.25 K/min		^							
K/min									
							💾 s	ave 📄 Loai	d 🗸 OK 🔀 Cancel

FIG. 2 - Calculated reaction rate (bottom graph) and progress (normalized signals) as a function of temperature under non-isothermal conditions (heating rate of 0.25 K/min).

To display a set of non-isothermal curves at different heating rates introduce the required values as shown below.

Predictions									×		
Predictions											
Temperature p	Temperature profiles Sample controlled thermal analysis										
Iso	Non-Is	0	Step	Modulated	Shock	Worldwide	STANAG	Customized			
SADT	Therr	nal Sta	bility Diagram								
Safety Diagram	TMRa	hd									
Automatic Report									I		
Non-isothermal con	ditions		_						Show results in one plot		
Non-isothermal									Combine all axes		
O Double scanning tes	st (DST)										
Starting temperature	60 °C										
Heating rate (K/min)											
0.25 K/min		×	î								
0.5 K/min		×									
1 K/min		×									
2 K/min		×	~								
							💾 S	ave 📄 Load	I VC XCancel		

FIG. 3 - Calculated reaction rates (bottom graph) and progresses (normalized signals) as a function of temperature under non-isothermal conditions. The values of the heating rates in K/min are marked on the curves.

STEP-WISE TEMPERATURE MODE

😻 Predictions										×	
Predictions											
Temperature profiles Sample controlled thermal analysis											
Iso	No	n-Iso	Step	Modulated	Sh	ock	Worldwide	STANAG	Customized		
SADT Cafabu Diaga	T T	hermal St	ability Diagram								
Automatic Re	port	пкац									
Stepwise cond	litions									Show results in one plot	
Time unit min	~	Time max	630 min	Number of cy	des 1					Combine all axes	
From temp (9	C) To temp (°	C) Heati	ng rate (K/min)	Time (min)							
30	•C 100	℃ 5	K/min	14 r	nin 🗙	î					
100	•C 100	℃ 0	K/min	360 r	nin 🗙						
100	°C 20	℃ -5	K/min	16 r	nin 🗙						
20	°C 20	℃ 0	K/min	60 r	nin 🗙						
20	°C 200	°C 1	K/min	180 r	nin 🗙						
-						Ý		L ¹¹ s	ave 📔 Loa	d V X Cancel	

FIG. 1 - Input of the parameters for chosen temperature zones.

FIG. 2 - Step-wise mode. Reaction rate (top blue curve) and progress α (normalized signals) as a function of time at subsequent isothermal and non-isothermal temperature zones.

MODULATED TEMPERATURE MODE

😻 Predictions								×
🧭 Pre	edictio	ns						
Temperature	profiles 🚺	Sample controlled	thermal analysis					
Iso	Non-Iso	Step	Modulated	Shock	Worldwide	STANAG	Customized	
SADT	Thermal S	itability Diagram						
Safety Diagram	TMRad							
Time max 1 Underlying An 30 ± 0 30 ± 20	year ✓ nplitude/2 Freq	uency Units	Underlying heating rate 0 K/min	Nbr of oscillations 0 (Iso-mode) 3.7E02	×			Combine all axes
±	3 °	hour ~	0 K/min	Not applicable		H s	ave	VK XCancel

FIG. 1 - Input of parameters of isothermal (30°C) and modulated experiment (temperature of 30°C fluctuating with amplitude of 20°C and frequency of 24 hrs.

FIG. 2 - Reaction rate (middle) and reaction progress (bottom, normalized signals) as a function of time under isothermal (blue curves, 30°C) and modulated temperature conditions (red curves, 30°C with amplitude of ±20°C and frequency 24 h).

- WORLDWIDE REAL ATMOSPHERIC TEMPERATURE PROFILES -

FIG. 2 - Top: Average daily minimal and maximal temperatures recorded between 1961 and 1990 in Zurich (blue) and Miami, USA, (red); Reaction rate (middle section) and reaction progresses (normalized signals) as a function of time for the Zurich and Miami temperature profiles.

STANAG CLIMATIC CATEGORIES

FIG. 1 - The climate categories defined by STANAG can be chosen from the scrolling list.

FIG. 2 - Top: Average daily temperature fluctuations in STANAG A2 zone. Reaction rate (middle section) and reaction progress (normalized signals) as a function of time.

USER CUSTOMIZED TEMPERATURE MODE

Pred	Pre	dictio	ons								×
Ie	mperature p	rotiles	Sample col	ntrolled thermal	anaiysis	Chards	March de Cala	-	TAWAG	Contractor	
CAR	150	NON-150	Ste I Chabilita Dia	ep 1100	lulated	Shock	worldwide		TANAG	Customized	
Safet	v Diagram	TMPad	i Stability Die	iyrani							
Autom	atic Report	TTRau									
S/ Ty Be Ei	pen customized Z Zeit	l profile	Temperatur	e Humidit	ry .		< v	Time Column [Unit [Temperat Column [Unit	2 s ture 3 ℃		Combine all axes
	1	2	3	4			^	Relative	numidity		
1	1	0	19.378	38.2				Column	-	~	
2	2	3600	19.335	38.9				Unit	0/_	~	
3	3	7200	19.351	38.9				Crine	70		
4	4	10800	19.335	39.6				Repeatin	g temperatu	e profile	
5	5	14400	19.318	39.8				Number o	f cycles 1		
6	6	18000	19 273	39 R			~		💾 Sa	ve 📄 Lo	ad 🗸 OK 🔀 Cancel

FIG. 1 – Prediction of the reaction course for any set of temperature-time data as e.g. for the real temperature profiles recorded by temperature trackers.

SAMPLE CONTROLLED THERMAL ANALYSIS

FIG. 1 - TK Software allows the prediction of the reaction course for the temperature mode which is required to obtain the chosen, set by user, constant reaction rate. This specific technique is known as Sample Controlled Thermal Analysis or Controlled Rate Thermal analysis (CRTA). In presented example the reaction rate from the beginning to the end is set as 1% of reaction progress per minute: the reaction from the beginning to the end proceeds in 100 min with the constant rate.

FIG. 2 - Prediction of rate-controlled reaction course in Sample Controlled Thermal Analysis mode: the dependences temperature vs time (top), reaction rate and reaction extent vs time (bottom).

FOR FURTHER INFORMATION VISIT: www.akts.com/tk

 Phone
 +41 848 800 221

 Email
 info@akts.com

AKTS SA Technopôle 1 3960 Sierre Switzerland

© 2021 AKTS SA - All rights reserved

