Keywords Results for
Isoconversional Kinetics

Kinetic analysis of solids of the quasi-autocatalytic decomposition type: SADT determination of low-temperature polymorph of AIBN

Simulations of SADT values based on the heat balance of the system are presented for azobisisobutyronitrile (AIBN). These simulations used kinetic parameters obtained from heat flow calorimetry experiments performed at temperatures in the stability range of low-temperature (L-T) polymorph of AIBN. Thermal Activity Monitor (TAM) data were collected in the range of 55-70 °C. The simulated SADT value for L-T AIBN amounts to 46 °C. This is very similar to the computed results obtained in the BAM project for the high-temperature (H-T) form of AIBN which amounts to 47 °C and is also in full agreement with the large scale experimentally found SADT of AIBN (47 °C) …

read more

Thermal decomposition of AIBN, Part B: Simulation of SADT value based on DSC results and large scale tests according to conventional and new kinetic merging approach

The paper presents the results of the common project performed with the Federal Institute for Materials Research and Testing, Berlin, Germany (BAM) concerning the comparison of the experimental results with simulations based on the application of the kinetic-based method and heat balance of the system for the determination of the self accelerating decomposition temperature (SADT). The substantial potential of the kinetic-based method is illustrated by the results of the simulation of SADT of azobisisobutyronitrile (AIBN) …

read more

Determination of Thermal Hazard from DSC measurements. Investigation of Self-Accelerating Decomposition Temperature (SADT) of AIBN

The method of determination of the thermal hazard properties of reactive chemicals from DSC experiments is illustrated by the results of SADT simulations performed with azobisisobutyronitrile (AIBN). The kinetics of decomposition of AIBN in the solid state was investigated in a narrow temperature window of 72-94 °C, just below the sample melting. The kinetic parameters of the decomposition were evaluated by differential isoconversional method. The very good fit of the experimental results by the simulation curves, based on the determined kinetic parameters, indicated the correctness of the kinetic description of the process …

read more

Prediction of Thermal Stability of Materials by Modified Kinetic and Model Selection Approaches based on Limited Amount of Experimental Points

The experimental data collected in the discontinuous mode are often used for the computation of reaction kinetics and, further, for the simulation of the thermal stability of materials. However, the kinetic calculations based on limited amount of sparse points require specific criteria allowing correct choice of the best kinetic model. We present the modified kinetic computations allowing considering one, two or even more reaction stages by applying unlimited amount of combinations of different kinetic models for the best description of the reaction course. The kinetic parameters are calculated using the truncated Šestâk-Berggren (SB) approach and further verified by using the Akaike and Bayesian information criteria (AIC and BIC, respectively) …

read more

Compatibility and simulation of the heating up of the propellant charge body of a high precision machine gun

The new precision machine gun in development at company Diehl uses a propellant charge without any case. It is based on consolidated NC double base ball powder. For ballistic reasons a defined distance between propellant charge body (PB) and the wall of the combustion chamber must be adjusted and for this a new feature was developed in cooperation with Fraunhofer ICT. The distance is achieved with foam stripes based on polyurethane energized by HMX. To avoid a degradation of the ballistic properties during use time, compatibility investigations using heat flow microcalorimetry have been performed to select suitable foam formulations. For this special assessment the criteria have been developed …

read more

Kinetic Evaluations for the Transportation of Dangerous Chemical Compounds

Current legislation about goods carriage (ADR – Agreement Concerning the International Carriage of Dangerous Goods by Road) sets the determination of several parameters related to the conditions of the used containers. Several of these parameters are required for the substance classification and the definition of the precautions to be adopted during transportation. One of the main potential hazards during freight is related to the thermal decomposition of the substance. Testing for the identification of decomposition in the carriage conditions can be time consuming and expensive, therefore different solutions have been attempted to simulate thermal behaviour of chemical compounds during transportation …

read more

Consideration of Autocatalytic Behavior in Determination of Self Accelerating Decomposition Temperature

When determining Self Accelerating Decomposition Temperatures (SADT) for shipment purposes, the kinetics of the decomposition reaction of the materials must be known. The simplified models assuming the first order decomposition kinetics are generally applied, however this traditional approach fails in correct SADT determination for autocatalytic and multistage overlapped reactions. For these cases a more universal, yet easily implemented, advanced method will be presented in which the detailed kinetic mechanism does not need to be known to correctly predict SADT …

read more

Determination of SADT and Cook-Off Ignition Temperature by Advanced Kinetic Elaboration of DSC Data

The exothermic decomposition parameters of a single-base propellant were obtained using differential scanning calorimeter (DSC) tests conducted at various heating rates. The DSC signals were processed using the Friedman isoconversional method to compute activation energy as a function of conversion. There was excellent agreement between the experimental and the simulation plots, which confirms the validity of the kinetic model used to describe the propellant’s exothermic decomposition. The kinetic parameters and heat balance were subsequently analyzed and used for a simulation of cookoff experiments conducted at different experimental rates (heating rates 3.3 – 1.0 K/h and a heat-wait-search mode) …

read more

Prediction of the Thermal Behaviour of Energetic Materials by Advanced Kinetic Modelling of HFC and DSC Signals

High energetic materials can slowly decompose during storage or transport particularly at elevated temperatures which may result in reduced performance and correct functionality. Even very low decomposition progress of the exothermic reaction resulting in minor heat release can significantly change the properties of the propellants leading to shortening of the service life-time. The reaction progress influencing already the behaviour of the samples can be in the range of ca. 1-2% of the total decomposition degree …

read more

Prediction of the Ageing of Rubber using the Chemiluminescence Approach and Isoconversional Kinetics

A common scepticism towards the application of many product formulations results from the fact that their long-term stability is difficult to predict. In the present study we report on a new approach of kinetic analysis of the oxidation reactions of natural rubbers with and without stabiliser in an oxygen atmosphere at moderate temperatures using CL measurements carried out on a newly-developed instrumentation. The kinetic parameters of the oxidation process, calculated from the chemiluminescence’s signals by means of the differential isoconversional method of Friedman, were subsequently applied for the simulation of the rubber aging under different temperature profiles …

read more

The Simulation of the Thermal Behavior of Energetic Materials based on DSC and HFC Signals

Two small calibre and four medium calibre types of propellants were investigated non-isothermally (0.25-4 K min-1) by differential scanning calorimetry (DSC) in the range of RT-260-C and isothermally (60-100°C) by heat flow calorimetry (HFC). The data obtained from both techniques were used for the calculation and comparison of the kinetic parameters of the decomposition process. The application of HFC allowed to determine the kinetic parameters of the very early stage of the reaction (reaction progress below 0.02) what, in turn, made possible the precise prediction of the reaction progress under temperature mode corresponding to real atmospheric changes according to STANAG 2895 …

read more

Advanced Kinetics-based Simulation of Time to Maximum Rate under Adiabatic Conditions

An adiabatic calorimeter is very often used for the investigation of runaway of exothermic reactions. However the ideal adiabatic environment is a theoretical state which during laboratory scale testing cannot be obtained but may only be approached. Deviation from the fully adiabatic state comes from (i) the thermal inertia of the test system or heat lost into the sample container and (ii) the loss of heat from the container itself to the environment that reflects the ‘operational adiabaticity’ of the instrument…

read more

Advanced Simulation of the Lifetime of Energetic Materials based on HFC Signals

The prediction of the shelf life of energetic materials requires the precise determination of the kinetics of their decomposition. Due to the fact that energetic materials decompose with the evolution of heat, the thermoanalytical methods such as Differential Scanning Calorimetry (DSC) and Heat Flow Calorimetry (HFC) are often used for the monitoring the reaction rate and the evaluation of the kinetic parameters of these reactions. In the present paper we describe the precise, advanced method of the evaluation of the kinetic parameters from HFC signals …

read more

Prediction of Thermal Stability of Fresh and Aged Parchment

The hyphenated thermal analysis-mass spectrometry technique (TA-MS) was applied for the investigation of the thermal behavior of reference and aged parchment samples. The kinetic parameters of the process were calculated independently from all recorded TA and MS signals. The kinetic analysis showed the distinct dependence of the activation energy on the reaction progress. Such behavior is characteristic for the multistage mechanism of the reaction …

read more

Up-Scaling of DSC Data of High Energetic Materials

Differential scanning calorimetry (DSC) carried out with few heating rates was applied in the studies of the thermal properties of four energetic materials: EI® propellant, high explosive PBXW-17, pyrotechnic mixtures with composition B/KNO3 (50:50) and B/KNO3 (30:70). DSC signals, after optimization of the baseline, were used for the calculation of the kinetic parameters (KP) of the decomposition process applying advanced kinetic software designed by AKTS. The determination of the kinetic parameters was based on the differential iso-conversional method of Friedman. The correctness of the estimation of KP was checked by the comparison of the experimental and predicted courses of the decomposition …

read more

The Prediction of Thermal Stability of Self-Reactive Chemicals

An advanced study on the thermal behaviour of double base (boost and sustain propellant) rocket motor used in a ground to air missile has been carried out by differential scanning calorimetry (DSC). The presence of two propellants as well as the different experimental conditions (open vs. closed crucibles) influence the relative thermal stability of the energetic materials. Several methods have been presented for predictions of the reaction progress of exothermic reactions under adiabatic conditions. However, because decomposition reactions usually have a multi-step nature, the accurate determination of the kinetic characteristics strongly influences the ability to correctly describe the progress of the reaction …

read more

Prediction of the Progress of Solid-State Reactions under Different Tempreature Modes

Using a computational method (AKTS-TA-Software) for solid-state kinetic analysis, the calculations of the progress of solid-state reactions were achieved employing temperature conditions different from those at which the experiments were carried out. The prediction of the solid-state reaction extent is illustrated by the results obtained during decomposition of hydromagnesite (component of some pharmaceuticals) …

read more

Computational aspects of kinetic analysis: Part A: The ICTAC kinetics project-data, methods and results

Part A of this series of papers (Parts B to E follow) presents the data and methods used, as well as the results obtained by participants in the ICTAC Kinetics Project. The isothermal and non-isothermal data sets provided were based on a hypothetical simulated process as well as on some actual experimental results for the thermal decompositions of ammonium perchlorate and calcium carbonate. The participants applied a variety of computational methods. Isoconversional and multi-heating rate methods were particularly successful in correctly describing the multi-step kinetics used in the simulated data …

read more

Computational aspects of kinetic analysis.: Part E: The ICTAC Kinetics Project—numerical techniques and kinetics of solid state processes

The hyphenated thermal analysis-mass spectrometry technique (TA-MS) was applied for the investigation of the thermal behavior of reference and aged parchment samples. The kinetic parameters of the process were calculated independently from all recorded TA and MS signals. The kinetic analysis showed the distinct dependence of the activation energy on the reaction progress. Such behavior is characteristic for the multistage mechanism of the reaction …

read more

Categories