Keywords Results for
Melting and decomposition

Kinetic analysis of solids of the quasi-autocatalytic decomposition type: SADT determination of low-temperature polymorph of AIBN

Simulations of SADT values based on the heat balance of the system are presented for azobisisobutyronitrile (AIBN). These simulations used kinetic parameters obtained from heat flow calorimetry experiments performed at temperatures in the stability range of low-temperature (L-T) polymorph of AIBN. Thermal Activity Monitor (TAM) data were collected in the range of 55-70 °C. The simulated SADT value for L-T AIBN amounts to 46 °C. This is very similar to the computed results obtained in the BAM project for the high-temperature (H-T) form of AIBN which amounts to 47 °C and is also in full agreement with the large scale experimentally found SADT of AIBN (47 °C) …

read more

Determination of Thermal Hazard from DSC measurements. Investigation of Self-Accelerating Decomposition Temperature (SADT) of AIBN

The method of determination of the thermal hazard properties of reactive chemicals from DSC experiments is illustrated by the results of SADT simulations performed with azobisisobutyronitrile (AIBN). The kinetics of decomposition of AIBN in the solid state was investigated in a narrow temperature window of 72-94 °C, just below the sample melting. The kinetic parameters of the decomposition were evaluated by differential isoconversional method. The very good fit of the experimental results by the simulation curves, based on the determined kinetic parameters, indicated the correctness of the kinetic description of the process …

read more

Scale-up Based on Advanced Kinetics. Influence of DTBP/Toluene Ratio on the Thermal Behavior of Samples in mg, kg and ton-Scales

The runaway reactions are generally investigated by the time-consuming Accelerating Rate Calorimetry (ARC) or in isothermal (ISO-ARC) or heat-waitsearch (HWS) modes. In present poster we discuss the application of the Differential Scanning Calorimetry (DSC) for the determination of the Time to Maximum Rate under adiabatic conditions (TMRad) of various concentrations of Ditert- butyl peroxide (DTBP) in toluene. Additionally we present the method of simulation of the course of ARC experiments …

read more

Estimation of Time to Maximum Rate under Adiabatic Conditions(TMRad) using Kinetic Parameters derived from DSC – Investigation of Thermal Behavior of 3-Methyl-4-Nitrophenol

Kinetic parameters of the decomposition of hazardous chemicals can be applied for the estimation of their thermal behavior under any temperature profile. Presented paper describes the application of the advanced kinetic approach for the determination of the thermal behavior also under adiabatic conditions occurring e.g. in batch reactors in case of cooling failure. The kinetics of the decomposition of different samples (different manufacturers and batches) of 3-methyl-4-nitrophenol were investigated by conventional DSC in non-isothermal (few heating rates varying from 0.25 to 8.0 K/min) and isothermal (range of 200-260°C) modes …

read more

Categories